Competition between L ! evy jumps and continuous drift

نویسنده

  • I. M. Sokolova
چکیده

Motivated by certain birth–death processes with strongly "uctuating birth rates, we consider a level-crossing problem for a random process being a superposition of a continuous drift to the left and jumps to the right. The lengths of the corresponding jumps follow a one-sided extreme L! evy-law of index !. We concentrate on the case 0¡ !¡ 1 and discuss the probability of crossing a left boundary (“extinction”). We show that this probability decays exponentially as a function of the initial distance to the boundary. Such behavior is universal for all !¡ 1 and is exempli#ed by an exact solution for the special case != 2 . The splitting probabilities are also discussed. c © 2003 Elsevier B.V. All rights reserved. PACS: 05.40.+j; 02.50.−r

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Distributions of the Continuous - TimeRandom

We provide a systematic analysis of the possible asymptotic distributions of one-dimensional continuous-time random walks (CTRWs) by applying the limit theorems of probability theory. Biased and unbiased walks of coupled and decoupled memory are considered. In contrast to previous works concerning decoupled memory and L evy walks, we deal also with arbitrary coupled memory and with jump densiti...

متن کامل

L Evy-driven Continuous-time Arma Processes

Gaussian ARMA processes with continuous time parameter, otherwise known as stationary continuous-time Gaussian processes with rational spectral density , have been of interest for many years. In the last twenty years there has been a resurgence of interest in continuous-time processes, partly as a result of the very successful application of stochastic diierential equation models to problems in...

متن کامل

Optimal Stopping and Perpetual Options for L Evy Processes Optimal Stopping and Perpetual Options for L Evy Processes

Solution to the optimal stopping problem for a L evy process and reward functions (e x ?K) + and (K ?e x) + , discounted at a constant rate is given in terms of the distribution of the overall supremum and innmum of the process killed at this rate. Closed forms of this solutions are obtained under the condition of positive jumps mixed-exponentially distributed. Results are interpreted as admiss...

متن کامل

Evy - Driven and Fractionally Integrated Armaprocesses with Continuous Time Parameterpeter

The deenition and properties of L evy-driven CARMA (continuous-time ARMA) processes are reviewed. Gaussian CARMA processes are special cases in which the driving L evy process is Brownian motion. The use of more general L evy processes permits the speciication of CARMA processes with a wide variety of marginal distributions which may be asymmetric and heavier tailed than Gaus-sian. Non-negative...

متن کامل

Evy Driven and Fractionally Integrated Arma Processes with Continuous Time Parameter

The de nition and properties of L evy driven CARMA continuous time ARMA processes are re viewed Gaussian CARMA processes are special cases in which the driving L evy process is Brownian motion The use of more general L evy processes permits the speci cation of CARMA processes with a wide variety of marginal distributions which may be asymmetric and heavier tailed than Gaus sian Non negative CAR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008